
Using FreeRTOS on F&S Boards

Manual on how to use/configuring the software

Version 1.68
(2017-07-05)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document describes how to configure the Linux kernel, the device tree and the board to
use it with FreeRTOS and its demo applications provided. The software is configured for the
efusA9X and PicoCOMA9X from F&S under Linux/Buildroot.

Remark

The version number on the title page of this document is the version of the document. It is
not related to the version number of any software release. The latest version of this docu-
ment can always be found at http://www.fs-net.de.

How To Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts and highlighting to emphasize the context of special terms:

File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

http://www.fs-net.de/

History
Date V Platform A,M,R Chapter Description Au

2017-03-16 0.1 All A - Title and “About this document” part created T

C

2017-03-22 0.2 All A, M 1,2,3,4 Modified title page (removed logos), Added Introduction,

Added information on Installation, Added Configuration on
UBoot

T

C

2017-03-23 0.3 All A, M 4,5,7,8 Added Modifying Device Tree chapter, Added FreeRTOS exam-
ples chapter, Added General Modifications chapter, Modified
Appendix

T

C

2017-03-23 0.4 All A, M 6 Changed flexcan_network_epit subchapter, Added Description
for gpio_imx

T

C

2017-03-24 0.5 All A, M 3,5,7 Explicit mentioning of armgcc download link, Changed download
link for FreeRTOS, Added legal information, Claryfied path for
examples

T

C

2017-03-27 0.6 All M 4,7 Added information on enable_m4() to u-boot modifying section,
Changed information on ecspi examples

T

C

2017-03-28 0.7 All A, M 4,7 Added information on changes in uboot regarding dram alloca-
tion, Changed information on rpmsg examples

T

C

2017-03-30 0.8 All A 5 Added information header regarding RPMsg T

C

2017-04-03 0.9 All M 5, 7 Changed “modifications made” section for rpmsg examples,
modified attention header to represent current state of develop-
ment for RPMsg on boards with less than 1 GB RAM.

T

C

2017-04-10 0.91 All A, M 5, 7 Added subchapters to chapter 5.6 to clearify situation on
RPMsg, changed “modifications made” part in RPMsg examples
in chapter 6

T

C

2017-04-12 0.95 All A 7 Added more information in “changes needed” for the RPMsg
pingpong examples

T

C

2017-04-19 1.0 All A, M 2, 3, 4, 7 Changed name for define in subchapter “Protecting modules”,
Added new description for i2c examples from NXP, Added own
examples, changed some naming conventions for paths, Added
attention header for GPIOs

T

C

2017-04-21 1.1 All M 7 Changed command for booting m4, Changed attention header
in chapter 3 regarding the current state of development

T

C

2017-04-25 1.2 All A,M - Modified title and “About this Document” to reflect changes on
PicoCOMA9X

T

C

2017-05-05 1.3 All A, M 2,3,4,5,6,
7

Changed structure of pin assignments chapter; moved the ta-
bles from chapter 6 to 2 and modified their content, changed ref-
ferences to tables in chapter 6, mentioned picocoma9x.dts addi-
tionally, Added “Known Issues” section to appendix, added infor-
mation about interfering audio chip and RPMsg

T

C

2017-05-08 1.35 All M 4,5 Changed “Changes in gpio_pins.[ch]” to reflect newes develop-
ment regarding the configure_gpio_pin() function

T

C

2017-05-10 1.4 All A, M 6 Added subchapter about resetting Cortex-M4, modified informa-
tion about i2c demo

T

C

2017-05-30 1.41 All M 4 Fixed typo in path to file T

C

2017-05-31 1.5 All A,M 5,6,7 Changed information on RPMsg VRING allocation addresses to
reflect recent changes in the build system, added chapter about
new build process, Moved FreeRTOS examples from chapter 6
to 7

T

C

2017-06-07 1.6 All A, M 2, 6 Added title to pin tables to clarify the board name, modified in-
formation regarding build/make/install and clean

T

C

2017-06-20 1.61 All M 2 Fixed wrong interface for efusa9x GPIOs T

F&S Using FreeRTOS on F&S Boards iii

C

2017-06-23 1.65 All A, M 1,7 Added figures and an informational text about time measure-
ment examples provided by F&S

T

C

2017-06-29 1.66 All A 1 Added figure for performance scaling govenor,

added result text at the end of chapter 1

T

C

2017-07-03 1.67 All M 1 Modified screenshots to a more unified measuring scale T

C

2017-07-05 1.68 All M 1 Swapped images; Trigger set on Input; Input signal is upper one
while output is on the lower part of the images

T

C

V Version

A,M,R Added, Modified, Removed

Au Author

iv F&S Using FreeRTOS on F&S Boards

Table of Contents

1 Introduction 1

2 Pin Assignments 7
2.1 GPIOs..7

2.2 FlexCAN...8

2.3 ECSPI..9

2.4 I2C...10

3 Installing Toolchain and FreeRTOS BSP 12
3.1 Installation of the GCC embedded toolchain..12

3.2 Installation of the FreeRTOS BSP 1.0.1...12

3.3 Description of the FreeRTOS examples directory structure12

3.3.1 demo_apps..12

3.3.2 driver_examples...13

4 Configuration for Cortex-M4 usage 14
4.1 Configuring UBoot ...14

4.2 Modifying the Linux Device Tree..15

4.2.1 Booting Cortex-A9 with Linux while Cortex-M4 is running................................15

4.2.2 Shared clock for low power mode..16

4.2.3 Protecting modules against reconfiguration...17

4.2.4 Enabling RPMsg node...18

5 General Modifications on FreeRTOS examples 19
5.1 Changes in board.c..19

5.2 Changes in board.h..19

5.3 Changes in gpio_pins.c..20

5.4 Changes in gpio_pins.h..20

5.5 Changes in pin_mux.c..20

5.6 Changes for the RPMsg Protocol...20

5.6.1 VRING allocation addresses..20

6 Building the examples 22

F&S Using FreeRTOS on F&S Boards v

6.1 Prepare.sh...22

6.2 Make..22

6.3 Clean.sh...23

7 FreeRTOS examples 24
7.1 General build information...24

7.2 Resetting the Cortex-M4 in UBoot..24

7.3 demo_apps..25

7.3.1 hello_world...25

7.3.2 hello_world_ocram...26

7.3.3 hello_world_ddr..26

7.3.4 hello_world_qspi..27

7.3.5 blinking_imx_demo..27

7.3.6 can_wakeup...28

7.3.7 func_gen..29

7.3.8 gpio_toggle..30

7.3.9 i2c_extension_board_demo...30

7.3.10 periodic_wfi_tcm..32

7.3.11 pingpong_bm...33

7.3.12 pingpong_freertos..34

7.3.13 str_echo_bm..35

7.3.14 str_echo_freertos...35

7.3.15 sema4_demo...36

7.3.16 sensor_demo...37

7.4 driver_examples...37

7.4.1 adc_imx6sx..37

7.4.2 ecspi_interrupt...37

7.4.3 ecspi_polling..38

7.4.4 epit...39

7.4.5 flexcan_loopback_epit..40

7.4.6 flexcan_network_epit...40

7.4.7 gpio_imx...41

7.4.8 i2c_interrupt_extension_board_imx6sx..42

7.4.9 i2c_polling_extension_board_imx6sx...43

vi F&S Using FreeRTOS on F&S Boards

7.4.10 i2c_interrupt_sensor_imx6sx..44

7.4.11 i2c_polling_sensor_imx6sx..44

7.4.12 uart_polling..44

7.4.13 uart_interrupt..45

7.4.14 wdog_imx...45

8 Appendix 47
List of Figures..47

List of Tables...47

Listings..47

Known Issues..48

Third Party Agreement from Real Time Engineers Ltd. ..48

Important Notice..48

F&S Using FreeRTOS on F&S Boards vii

Introduction

1 Introduction
FreeRTOS is the market leading, de-facto standard Real Time Operating System for embed-
ded systems from Real Time Engineers Ltd. It supports 35 architectures, received over
113000 downloads during 2014 and is professionally developed, strictly quality controlled, ro-
bust and free to embed in commercial products without any requirement to expose your pro-
prietary source code.

NXP provides a BSP package (FreeRTOS BSP 1.0.1) with a modified FreeRTOS and some
demo and driver examples for their I.MX 6SoloX SABRE-SD and SABRE-AI boards.

The efusA9X and PicoCOMA9X from F&S also have a Cortex-M4 tied to a Cortex-A9, so we
ported the BSP package from NXP to our own boards, which makes it possible to easily use
the Cortex-M4 with FreeRTOS while running the Cortex-A9 with Linux (Buildroot).

To show the benefits of the heterogenous SoC, F&S created one FreeRTOS and one Linux
application, gpio_toggle and tgpio, which just reacts to an interrupt GPIO via polling and tog-
gles an output GPIO. We also measured the jitter with an oscilloscope and provide you with
the results in form of screenshots of the measurements and numbers.

The lower signal is the input, the upper one the output signal. Frequency for the input signal
was 500 Hz.

F&S Using FreeRTOS on F&S Boards 1

Figure 1: Comparison of FreeRTOS and Linux application jitter (scaling: 2ms/div)

Introduction

2 F&S Using FreeRTOS on F&S Boards

Figure 2: Measurement results for FreeRTOS (scaling: 2us/div)

Figure 3: Measurement results for Linux application with interactive as governor (scaling: 200us/div)

Introduction

F&S Using FreeRTOS on F&S Boards 3

Figure 4: Measurement results for Linux application with performance as governor (scaling: 200us/div)

Figure 5: Measurement results for Linux application with powersave as governor (scaling: 200us/div)

Introduction

4 F&S Using FreeRTOS on F&S Boards

Figure 6: Measurement results for Linux application with interactive as governor and highest priority (scaling:
200us/div)

Figure 7: Measurement results for Linux application with performance as governor and highest priority (scal-
ing: 200us/div)

Introduction

Results

Minimal jitter Maximal jitter Average jitter

FreeRTOS 482 ns 731 ns 614 ns

Linux, interactive 288 us 484 us 295 us

Linux, powersave 285 us 468 us 299 us

Linux, performance 65 us 86 us 73 us

Linux, interactive, high priority 267 us 460 us 279 us

Linux, powersave, high priority 267 us 406 us 285 us

Linux, perfomance, high priority 61 us 96 us 70 us

Table 1: Measurement results

F&S Using FreeRTOS on F&S Boards 5

Figure 8: Measurement results for Linux application with powersave as governor and highest priority (scaling:
200us/div)

Introduction

The FreeRTOS applications jitter took about 614 ns on average with a range from 482 to
731 ns, while the Linux applications average was 295 us with a range from 288 to 484 us.
This shows that FreeRTOS operates ~480 times faster on average.

Using “performance” as scaling govenor results in 73 us jitter. That's still ~120 times slower
than FreeRTOS.

Considering higher priority for the Linux applications results in ~435 and ~115 times slower
reaction than FreeRTOS.

The Results show that FreeRTOS combined with an Cortex-M4 is a significant improvement
regarding real-time constraints compared to a multi-purpose OS. Measurement was done
with one task in FreeRTOS application and highest priority; On Linux we used different scal-
ing governors and lower nice levels (-20).

Remark

The documentation is based on the FreeRTOS BSP 1.0.1 package from NXP.

Some of the software examples provided by NXP expect a certain module or sensor to be
available on the board. Since F&S boards do NOT provide these, the associated examples
weren't ported at all.

6 F&S Using FreeRTOS on F&S Boards

Pin Assignments

2 Pin Assignments

2.1 GPIOs

For the F&S Boards, the pin assignments for the gpio_pins.c differs from the NXP
boards. So if you want to use GPIOs for the demo applications, driver examples or your own
projects, you can use the preconfigured GPIOs listed in Table 2 and Table 3.

efusA9X

Set as Name in source file Function Device GPIO
efus-

SINTF
Pin

KEY gpioPwm5 PWM_B PWM5 GPIO3_IO24 J22 30

LED gpioPwm6 BL_CTRL PWM6 GPIO3_IO23 J3 10

gpioSpiAMiso SPI_A_MISO SPI5 GPIO4_IO23 J22 33

gpioSpiAMosi SPI_A_MOSI SPI5 GPIO4_IO20 J22 34

gpioSpiAClk SPI_A_CLK SPI5 GPIO4_IO31 J22 35

gpioSpiACs1 SPI_A_CS1 SPI5 GPIO4_IO28 J22 36

gpioSpiACs2 SPI_A_CS2 SPI5 GPIO4_IO18 J22 37

gpioI2cBSda I2C_B_SDA I2C3 GPIO2_IO19 J22 45

gpioI2cBScl I2C_B_SCL I2C3 GPIO2_IO14 J22 46

gpioCanATx CAN_A_TX FLEXCAN1 GPIO7_IO07 J13 3

gpioCanARx CAN_A_RX FLEXCAN1 GPIO7_IO09 J13 4

Table 2: Pin Assignment of preconfigured GPIOs for efusA9X

F&S Using FreeRTOS on F&S Boards 7

Pin Assignments

PicoCOMA9X

Set as Name in source file Function
De-
vice

GPIO
PCO
Mnet

Pin
PC2-

SINTF
Pin

KEY gpioSpiMiso SPI_MISO SPI1 GPIO2_IO11 J3 3 J10 3

LED gpioSpiMosi SPI_MOSI SPI1 GPIO2_IO15 J3 6 J10 6

gpioSpiClk SPI_CLK SPI1 GPIO2_IO10 J3 5 J10 5

gpioSpiCso SPI_CS0 SPI1 GPIO2_IO16 J3 4 J10 4

gpioI2cSda I2C_A_SDA I2C4 GPIO7_IO03 J3 9 J10 9

gpioI2cScl I2C_A_SCL I2C4 GPIO7_IO2 J3 10 J10 10

gpioCanTx CAN_A_TX CAN1 GPIO7_IO07 J3 13 J10 25

gpioCanRx CAN_A_RX CAN1 GPIO7_IO09 J3 14 J10 26

Table 3: Pin Assignment of preconfigured GPIOs for PicoCOMA9X

Remark

If you want to use the preconfigured GPIOs you have to protect them like stated in 4.2.3 Pro-
tecting modules against reconfiguration, otherwise the Cortex-A9 will reconfigure the GPIO.

Attention

Some of the preconfigured GPIOs on the efusA9X are not used as the default devices in
the BSP package, but the ones for the PicoCOMA9X are used as SPI, I2C or CAN re-
spectively. If you need them otherwise, you have to use the other preconfigured GPIOs or
define your own ones. See the gpio_pins.c and gpio_pins.h for an example.

Note 1: Information on default assignment of GPIOs

2.2 FlexCAN

The following tables list the Ports used for FlexCAN on the respective starter kits and their
pins. Use them for the corresponding examples.

8 F&S Using FreeRTOS on F&S Boards

Pin Assignments

efusA9X

Function Device Name in pin_mux.c efus-SINTF Pin

CAN_B_TX FLEXCAN2 CAN2 J22 55

CAN_B_RX FLEXCAN2 CAN2 J22 56

Table 4: Pin Assignment for CAN2 Pins on efusA9X

PicoCOMA9X

Function Device
Name in

pin_mux.c
PC2-

SINTF
Pin PCOMnet Pin

CAN_A_TX FLEXCAN1 CAN1 J10 25 J3 13

CAN_A_RX FLEXCAN1 CAN1 J10 26 J3 14

Table 5: Pin Assignment for CAN1 Pins on PicoCOMA9X

2.3 ECSPI

The following tables list the Ports used for eCSPI on the respective starter kits and their
pins. Use them for the corresponding examples.

efusA9X

Function Device
Name in

pin_mux.c
efus-SINTF Pin

SPI_B_MISO SPI1 ECSPI1 J22 23

SPI_B_MOSI SPI1 ECSPI1 J22 24

SPI_B_CLK SPI1 ECSPI1 J22 25

SPI_B_CS1 SPI1 ECSPI1 J22 26

Table 6: Pin Assignment for eCSPI on efusA9X

F&S Using FreeRTOS on F&S Boards 9

Pin Assignments

PicoCOMA9X

Function Device
Name in

pin_mux.c
PC2-SINTF Pin PCOMnet Pin

SPI_MISO SPI1 ECSPI1 J10 3 J3 3

SPI_MOSI SPI1 ECSPI1 J10 6 J3 6

SPI_CLK SPI1 ECSPI1 J10 5 J3 5

SPI_CS0 SPI1 ECSPI1 J10 4 J3 4

Table 7: Pin Assignment for eCSPI on PicoCOMA9X

2.4 I2C

The following tables list the Ports used for I2C on the respective starter kits and their pins.
Use them for the corresponding examples.

efusA9X

Name Function Device efus-SINTF Pin

I2C-Clk I2C_A_CLK I2C2 J22 42

I2C-Dat I2C_A_DAT I2C2 J22 43

I2C-Irq I2C_A_IRQ I2C2 J22 44

Table 8: Pin Assignment for I2C2 Pins on efusA9X

PicoCOMA9X

Name Function Device PC2-SINTF Pin PCOMnet Pin

I2C-Clk I2C_A_SCL I2C4 J10 9 J3 9

I2C-Dat I2C_A_SDA I2C4 J10 10 J3 10

Table 9: Pin Assignment for I2C4 Pins on PicoCOMA9X

10 F&S Using FreeRTOS on F&S Boards

Pin Assignments

I2C-Extension-Board

Name Connector Pin

SCL J1 11

SDA J1 10

INT J1 9

Table 10: Pin Assignment on I2C Extension Board

F&S Using FreeRTOS on F&S Boards 11

Installing Toolchain and FreeRTOS BSP

3 Installing Toolchain and FreeRTOS BSP

3.1 Installation of the GCC embedded toolchain

The examples can be build with the GCC embedded toolchain (gcc-arm-none-eabi-
5_4_2016q3), which can be found under https://launchpad.net/gcc-arm-embedded.

After downloading the file you can extract the content to your filesystem:

tar -xvjf gcc-arm-none-eabi-${version}.tar.bz2

where ${version} will be replaced by the corresponding version you've downloaded.

It is necessary to export the ARMGCC_DIR environment variable:

export ARMGCC_DIR=/usr/local/arm/gcc-arm-none-eabi-${version}

For a more convenient way you can add this to the rc file of your favourite shell (e.g. zshrc,
bashrc, etc.)

3.2 Installation of the FreeRTOS BSP 1.0.1

The FreeRTOS BSP package modified by F&S can be found on the website under:

-- Missing Link, will be added in further release. You should be provided with a bun-
dled tar archive instead --

After you have downloaded the tarball extract it to a directory of your choice via:

tar -xvjf FreeRTOS_BSP_1.0.1_iMX6SX_F_S_Vx.y.tar.bz2

3.3 Description of the FreeRTOS examples directory
structure

3.3.1 demo_apps

Here you can find the applications which highlight certain key features of the ARM Cor-
tex-M4 Core combined with FreeRTOS. The demos can be found under
FreeRTOS_BSP_iMX6SX_F_S_Vx.y/examples/BOARD_NAME/demo_apps.

12 F&S Using FreeRTOS on F&S Boards

https://launchpad.net/gcc-arm-embedded

Installing Toolchain and FreeRTOS BSP

3.3.2 driver_examples

You can find simple applications here which are intended to show peripheral drivers working
with FreeRTOS in the bare metal environement. The drivers can be found under FreeR-
TOS_BSP_iMX6SX_F_S_Vx.y/examples/BOARD_NAME/driver_examples.

Attention

Examples which make use of onboard sensors, e.g. magnetic field strength measuring
were not ported, so use them at your own risk!

The status of the applications will be stated in chapter 7.

Note 2: Information about not ported examples

F&S Using FreeRTOS on F&S Boards 13

Configuration for Cortex-M4 usage

4 Configuration for Cortex-M4 usage

4.1 Configuring UBoot

F&S provides you with a modified UBoot which can make use of the Cortex-M4. In case you
need the source files or if you have to change something, you can follow this instructions to
make your UBoot use the M4:

1. add the following lines to u-boot-f+s/board/F+S/fsimx6sx/fsimx6sx.c:

#define ENABLE_M4 (3<<1) /* add this at line 100 */

and

void enable_m4(void {

unsigned int val = 0;

struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)
CCM_BASE_ADDR;

val = readl(&mxc_ccm->CCGR3);

val |= ENABLE_M4;

writel(val, &mxc_ccm->CCGR3);

} /* add this function at line 372 */

You need to add this functionc all to the board_init() function in the same file:

enable_m4(); /* add this at line 386 */

2. add cmd_bootaux.c to u-boot-f+s/common from the official UBoot release from

NXP.

3. add

obj-$(CONFIG_CMD_BOOTAUX) += cmd_bootaux.o

to u-boot-f+s/common/Makefile at line 230

4. add

#define CONFIG_IMX_BOOTAUX

#define CONFIG_CMD_BOOTAUX

to u-boot-f+s/include/configs/fsimx6sx.h in section “M4 specific configu-
ration”

5. add

#define M4_BOOTROM_BASE_ADDR 0x007F8000

to u-boot-f+s/arch/arm/include/asm/arch-mx6/imx-regs.h

6. add

writel(stack, M4_BOOTROM_BASE_ADDR);

14 F&S Using FreeRTOS on F&S Boards

Configuration for Cortex-M4 usage

writel(pc, M4_BOOTROM_BASE_ADDR + 4);

src_reg = (struct src *) SRC_BASE_ADDR;

setbits_le32(&src_reg->scr, 0x00400000);

clrbits_le32(&src_reg->scr, 0x00000010);

to u-boot-f+s/arch/arm/cpu/armv7/mx6/soc.c at line 377

7. To get the RPMsg examples up and running with Linux, you have to add the following
function to u-boot-f+s/board/F+S/fsimx6sx/fsimx6sx.c:

/* Initialize the RAM banks and leave space for the two rpmsg
vrings in between (exclude 0xBFFF0000 - 0xC0000000) */

void dram_init_banksize(void)

{

DECLARE_GLOBAL_DATA_PTR;

unsigned int size = gd->ram_size;

if (size > 0x40000000) {

gd->bd->bi_dram[1].start = gd->ram_base + 0x40000000;

gd->bd->bi_dram[1].size = size - 0x40000000;

size = 0x40000000;

} else {

gd->bd->bi_dram[1].start = 0;

gd->bd->bi_dram[1].size = 0;

}

gd->bd->bi_dram[0].start = gd->ram_base;

gd->bd->bi_dram[0].size = size - 0x10000;

}

This is needed since dram_init_banksize() initializes the whole DRAM before booting
Linux which prevents the RPMsg driver from allocating it's shared memory.

4.2 Modifying the Linux Device Tree

4.2.1 Booting Cortex-A9 with Linux while Cortex-M4 is running

To prevent kernel panics while booting the Cortex-A9 the following lines must be added to
the device tree (efusa9x.dts/picocoma9x.dts) in section &clks:

fsl,shared-mem-addr = <0x91F000>;

F&S Using FreeRTOS on F&S Boards 15

Configuration for Cortex-M4 usage

fsl,shared-mem-size = <0x1000>;

This will tell the Cortex-A9 which memory range will be shared between Cortex-A9 and Cor-
tex-M4.

4.2.2 Shared clock for low power mode

Some examples make use of the low power management feature of the Cortex-M4. The
Cortex-A9 often takes part in this example by shutting down peripheral resources. Adding
the following lines to &clks

fsl,shared-clks-number = <0x23>;

fsl,shared-clks-index = <IMX6SX_CLK_PLL2_BUS IMX6SX_CLK_PLL2_PFD0

IMX6SX_CLK_PLL2_PFD2 IMX6SX_CLK_PLL3_USB_OTG

IMX6SX_CLK_PLL3_PFD1 IMX6SX_CLK_PLL3_PFD2

IMX6SX_CLK_PLL3_PFD3 IMX6SX_CLK_PLL4_AUDIO

IMX6SX_CLK_PLL5_VIDEO

IMX6SX_CLK_OCRAM IMX6SX_CLK_CAN1_SERIAL

IMX6SX_CLK_CAN1_IPG IMX6SX_CLK_CAN2_SERIAL

IMX6SX_CLK_CAN2_IPG IMX6SX_CLK_CANFD

IMX6SX_CLK_ECSPI1 IMX6SX_CLK_ECSPI2

MX6SX_CLK_ECSPI3 IMX6SX_CLK_ECSPI4

IMX6SX_CLK_ECSPI5 IMX6SX_CLK_QSPI1

IMX6SX_CLK_QSPI2 IMX6SX_CLK_SSI1

IMX6SX_CLK_SSI2 IMX6SX_CLK_SSI3

IMX6SX_CLK_UART_SERIAL IMX6SX_CLK_UART_IPG

IMX6SX_CLK_PERIPH_CLK2_SEL IMX6SX_CLK_DUMMY

IMX6SX_CLK_I2C1 IMX6SX_CLK_I2C2

IMX6SX_CLK_I2C3 IMX6SX_CLK_I2C4

IMX6SX_CLK_EPIT1 IMX6SX_CLK_EPIT2>;

will let you use the SharedClk_EnableNode() function to tell the Cortex-A9 to NOT shut them
down when running in low power mode.

Remark

If you do not need all of the peripherals shared for the Cortex-M4, feel free to just add those
needed for your application.

16 F&S Using FreeRTOS on F&S Boards

Configuration for Cortex-M4 usage

4.2.3 Protecting modules against reconfiguration

Some examples for the Cortex-M4 need peripherals which might be reconfigured by booting
up the Cortex-A9 with Linux.

To prevent this you should protect the module by disabling it in the Device Tree
(efusa9x.dts/picocoma9x.dts). This can be done by changing the modules status by
modifying

status = "okay";

to

status = "disabled";

This can be enhanced by using a #define with a #if defined block.

Example

To protect PWM6 against reconfiguration from the linux kernel you have to change the sta-
tus in the section &pwm6:

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_pwm6_0>;

status = "okay";

to

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_pwm6_0>;

#if !defined(GPIO_LED_M4)

status = "okay";

#else

status = "disabled";

#endif

after that add a define to the efusa9x.dts/picocoma9x.dts:

#define GPIO_LED_M4 1

This will ensure that the GPIO is not configured as PWM6 if you boot the Linux kernel.

Attention

Since the examples use different modules you will get a detailed description which mod-
ules to disable in chapter 6 in the corresponding subchapter of the example (section
“Changes needed”).

Note 3: Module disabling

F&S Using FreeRTOS on F&S Boards 17

Configuration for Cortex-M4 usage

4.2.4 Enabling RPMsg node

To run the RPMsg examples you need to add the following section to enable the usage the
RPMsg modules inside of Linux:

&rpmsg{

status = "okay";

};

If you use the PicocCOMA9X, you additionally have to comment the following line out in the
picocoma9x.dts:

#define CONFIG_PICOCOMA9X_AUDIO

18 F&S Using FreeRTOS on F&S Boards

General Modifications on FreeRTOS examples

5 General Modifications on FreeRTOS exam-
ples

The files needed for general modifications (board.*, pin_mux.*, etc.) can be found under
FreeRTOS_BSP_iMX6SX_F_S_VX.Y/examples/BOARD_NAME.

5.1 Changes in board.c

F&S boards use a different input clock for the UART than NXP. So we changed line

DbgConsole_Init(BOARD_DEBUG_UART_BASEADDR, 24000000, 115200);

to

DbgConsole_Init(BOARD_DEBUG_UART_BASEADDR, 80000000, 115200);

We also removed unnecessary parts in BOARD_ClockInit() and dbg_uart_init() since some
of these settings were already covered by our Nboot.

5.2 Changes in board.h

• We modified the BOARD_GPIO_KEY_* and BOARD_GPIO_LED_* defines to com-
ply with our GPIOs on the board.

• The BOARD_ADC_INPUT_CHANNEL was changed to Nr. 0 because there is no
channel 3 connected to the goldfinger connector on the efusA9X.

• The pin mux configuration was a bit tedious, so we added a macro which can be
used in conjunction with

/platform/devices/MCIMX6X/include/imx6sx_iomuxc_pins.h

which resembles a file from the Linux kernel to set the pad settings. This simplifies
the setting of the pads and mux's in pin_mux.c and leave the IOMUXC configura-
tion coherent with the Linux ones used by the Cortex-A9

Macro for setting the pad

set_iomux(PAD_MUX_SETTINGS, pad_value)

PAD_MUX_SETTINGS Array of 5 values which corresponds
to the iomuxc values stated in
imx6sx_iomuxc_pins.h

pad_value hex value representing the settings

for the pad register

F&S Using FreeRTOS on F&S Boards 19

General Modifications on FreeRTOS examples

Example

/* Setting the TXD for UART1 */

set_iomux(MX6SX_PAD_GPIO1_IO04__UART1_TX, 0x1B0B1);

This will set the UART1_TX to 0x1B0B1 in the IOMUXC.

5.3 Changes in gpio_pins.c

We added predefined GPIOs for the blinking_imx_* and other demos. The unused ones
were commented out since we modified the ported examples.

The configure_gpio_pin() was changed. This decision was made since this code seems a bit
confusing; this part should be done in the pin_mux.c because it's similar to setting the pads
and mux's in the IOMUXC. We use the set_iomux() macro in this function instead.

5.4 Changes in gpio_pins.h

We modified the _gpio_config struct to reflect the changes made for the
configure_gpio_pin() function.

Some of the extern gpio_config_t declarations were commented out since we changed the
predefined GPIOs.

5.5 Changes in pin_mux.c

Instead of setting the Pads, Mux's and everything else via the NXP defines we make use of
the set_iomux() macro described in 5.2 Changes in board.h to simplify the whole setup
process.

We mainly changed the pads and mux's to the ones used on the efusA9X board from F&S.

5.6 Changes for the RPMsg Protocol

If you want to run the RPMsg examples or use the API for your own applications, follow the
steps provided in chapter 4.1, section 7 and chapter 4.2.4.

5.6.1 VRING allocation addresses

On boards with less than 1GB RAM the hardcoded addresses for the VRING allocation won't
fit, so you have to change them. This is done by calling the prepare.sh script described in
the next chapter.

In /middleware/multicore/open-amp/porting/imx6sx_m4/platform_info.c

change

20 F&S Using FreeRTOS on F&S Boards

General Modifications on FreeRTOS examples

#define VRING0_BASE 0xBFFF0000

#define VRING1_BASE 0xBFFF8000

according to you RAM size, e.g. for 512 MB RAM:

#define VRING0_BASE 0x9FFF0000

#define VRING1_BASE 0x9FFF8000

Attention

Manually changing the VRING allocation address for the Cortex-M4 side is not needed
any more. Use the prepare.sh script described in chapter “6.1 Prepare.sh“.

However, the allocation addresses on Linux side have to be changed manually according
to the following lines

Note 4: RPMsg

In linux/arch/arm/mach-imx/imx_rpmsg.c change line 293 to 294

rpdev->vring[0] = 0xBFFF0000;

rpdev->vring[1] = 0xBFFF8000;

to the same value as in the platform_info.c, e.g. for 512 MB RAM to

rpdev->vring[0] = 0x9FFF0000;

rpdev->vring[1] = 0x9FFF8000;

F&S Using FreeRTOS on F&S Boards 21

Building the examples

6 Building the examples
To simplify the process of building, configuring the examples and cleaning up we provide
you with a set of bash scripts located in the root directory of the FreeRTOS BSP:

6.1 Prepare.sh

This script will configure board relevant settings and create symlinks to the board specific
header files in examples/fsimx6sx. You can execute the script in your terminal by typing

./prepare.sh

and follow the instructions given by the cli:

Choose on of the following boards for which you want to build the examples:

efusa9x[1] picocoma9x[2]

Enter number in []-brackets for the corresponding board: 2

Symlinks to board specific files created!

Do you want a Release or Debug build?

(r/d) [default: r]: r

Which DRAM size does your board have?

(512/1024) [default: 1024]: 512

If you have a PicoCOMA9X with a fused PCIE_DISABLE, you need

the workaround to disable RDC_* calls, otherwise your CPU will hang

(See documentation, last chapter)

(y/n) [default: n]: y

All set up, starting cmake...

Attention

You might have to change the variable PACKAGE_PATH inside of prepare.sh accord-
ing to the location of the FreeRTOS BSP on your system!

Note 5: PACKAGE_PATH in prepare.sh

6.2 Make

The prepare.sh script will configure and invoke cmake to generate a Makefile. After this,
you can run

22 F&S Using FreeRTOS on F&S Boards

Building the examples

make -j4

To build all examples located in examples/fsimx6sx and install the binaries to FreeR-
TOS_BSP_iMX6SX_F_S_Vx.y/bin/$BOARD.

If you want to build a specific example just type

make -j4 example_name && make install/fast

to build and install the binary of the choosen example.

Type

make help

for a list of possible examples for make.

6.3 Clean.sh

By executing

make clean-all

you can clean up all build files and binaries. This will be necessary if you make changes to
the CmakeLists.txt in the root directory of the FreeRTOS BSP.

F&S Using FreeRTOS on F&S Boards 23

FreeRTOS examples

7 FreeRTOS examples
In this chapter we will provide you with necessary information on the demo and driver appli-
cations.

The “Description” will inform you about the demo's purpose.

In the “Modifications made” section you will find useful information if changes were made to
certain files by F&S and the reason behind these changes.

“Changes needed” is the most important section. You will find the information necessary to
successfully build and execute the examples here.

The last section, “Execute binary” will tell you the required steps to execute the image built.

7.1 General build information

To build any of the following examples, you have to switch in the corresponding armgcc
folder by executing

cd
FreeRTOS_BSP_iMX6SX_F_S_VX.Y/examples/BOARD_NAME/demo_apps/demo_n
ame/armgcc

where X.Y must be replaced by the packages version and demo_name by the name of the
demo folder you want to build.

Next, you have to execute

./clean.sh && ./build.sh && cp release/demo_name.bin /tftp_dir

where demo_name must be replaced by the name of the demo application you have built
and tftp_dir by the path to your tftp folder.

Remark

Some of the demos/drivers have more subdirs so you might have to build more than one ap-
plication or change the cd command stated above to match the directories location of the ar-
mgcc folder.

7.2 Resetting the Cortex-M4 in UBoot

If you use TFTP and change something in your application, it might seem convenient to only
reset the Cortex-M4 instead of the whole board. This can be achieved by running the follow-
ing code segment inside of the UBoot

setenv reset_m4 "mw.l 0x20D80000 0xA0481500; tftp ${m4_file};
cp.b $loadaddr 0x7F8000 $filesize; mw.l 0x20D8000 0xA0480508"

and then execute

24 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

run reset_m4

to issue a Cortex-M4 Platform Reset, refetching the application from the TFTP server and
reloading it on the Cortex-M4.

Remark

The m4_file command must be defined for this to work.

7.3 demo_apps

7.3.1 hello_world

Description

Just a simple application which prints a “hello world!” string on the Cortex-M4 side and echo-
ing input back to the user if he is connected to the Cortex-M4 via UART.

Modifications made

Modified board.c; some clock settings are handled by the Nboot, so we removed the corre-
sponding code.

Changes needed

If you want to run this example while booting the Cortex-A9, you have to disable the UART
configuration in the Device Tree by changing the following line in &uart3:

status = "disabled";

Execute binary

Run

tftp hello_world.bin; cp.b $loadaddr 0x7f8000 $filesize; bootaux
0x7f800

to start the example.

Remark

Since the rest of the examples also use the Cortex-M4 you might keep the UART3 disabled.

Using direct addresses in UBoot seems a bit inconvenient. You should add

setenv m4 “tftp ${m4_file}; cp.b $loadaddr 0x7f8000 $filesize;
bootaux 0x7f8000

setenv m4_file “hello_world.bin”

F&S Using FreeRTOS on F&S Boards 25

FreeRTOS examples

as environment variables to the UBoot to easily run them via

run m4

and change m4_file according to the example used.

7.3.2 hello_world_ocram

Description

This example doesn't use the TCM but can be launched in OCRAM instead. Since F&S do
not provide OCRAM chips on the efusa9x by default you have to use the L2-Cache as
OCRAM to run the hello_world_ocram example.

Modifications made

Changed ORIGIN in
/platform/devices/MCIMX6X/linker/gcc/MXIMX6X_M4_ocram.ld

from 0x00910XXX to 0x00980XXX so that the L2, if configured as OCRAM, can be used.

Changes needed

none

Execute binary

Run

mw.l 0x020e402c 0x2

to enable L2 as OCRAM and then start the M4 with

tftp hello_world_ocram.bin; cp.b $loadaddr 0x00980000 $filesize;
dcache flush; bootaux 0x00980000

7.3.3 hello_world_ddr

Description

Works similar to hello_world_ocram except that it uses DDR instead of OCRAM.

Modifications made

none

Changes needed

none

26 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

Execute binary

Run

tftp hello_world_ddr.bin; cp.b $loadaddr 0x9ff00000 $filesize;
dcache flush; bootaux 0x9ff00000

7.3.4 hello_world_qspi

This example wasn't ported because we do not offer a QSPI chip on the efusA9X and Pico-
COMA9X.

If you want to run this example you have to port it by yourself.

7.3.5 blinking_imx_demo

Description

By running this demo you can let a LED blink or print out '+' and '-' with different frequencies
by pressing a key connected to gpioPwm5.

Modifications made

Changed BOARD_GPIO_KEY_* and BOARD_GPIO_LED_* in board.h to the gpios con-
figured in gpio_pins.c in ./examples/efusa9x.

Changed

configure_gpio_pin(BOARD_GPIO_KEY_CONFIG);

to

set_iomux(MX6SX_PAD_LCD1_DATA23__GPIO3_IO_24, 0x30B0);

set_iomux(MX6SX_PAD_LCD1_DATA22__GPIO3_IO_23, 0x30B0);

in hardware_init.c.

Changes needed

If you do not want to connect a LED to gpioPwm6 you can change the line

#define BOARD_GPIO_LED_CONFIG (&gpioPwm6)

to

#define BOARD_GPIO_LED_CONFIG 0

If you want to boot the Cortex-A9, you need to follow the changes described in chapter 4.2.3
Protecting modules against reconfiguration.

F&S Using FreeRTOS on F&S Boards 27

FreeRTOS examples

Execute binary

Run

setenv m4_file "blinking_imx_demo_epit.bin"

run m4

in UBoot (see 7.3.1 on how to set the environment variable m4).

7.3.6 can_wakeup

Description

In this demo application you can see the low power management feature of the Cortex-M4
with CAN in stop-mode. The Cortex-M4 will enter stop-mode after the receiver program is
running on the Cortex-M4 and the Cortex-A9 is booted up.

It's possible to send Cortex-A9 into suspend mode by entering

echo mem > /sys/power/state

Listing 1: suspend Cortex-A9

inside of the Linux system and then start the transmitter program on the other board. This
will wake up the Cortex-A9 while the Cortex-M4 is receiving the data sent.

For further information on how to set up the two boards consult the
“Getting_Started_with_FreeRTOS_BSP_for_i.MX_6SoloX.pdf” located in the doc
folder in the FreeRTOS BSP package.

Modifications made

Changed /armgcc/CMakeLists.txt to set CMAKE_EXE_LINKER_FLAGS_* to TCM in-
stead of the default QSPI. This makes it possible to run the program directly on the Cor-
tex-M4 memory.

Changes needed

We modified the package to use CAN2 instead of the default CAN1. Connect the cables to
the corresponding pins on both boards according to Table 4(efusA9X) or Table 5(PicoCO-
MA9X).

Additionally, you have to disable &flexcan1 and/or &flexcan2 in the Device Tree by

changing

status = okay

to

status = disabled

28 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

or protect them like stated in chapter “4.2.3 Protecting modules against reconfiguration(17)”

Execute binary

Run

mw.w 0x0091f000 0x0 4; dcache flush

to clear the shared memory magic numbers and then

setenv m4_file "can_wakeup_rx.bin"

run m4; boot

on board one. After the Cortex-A9 has booted up, you can execute Listing 1 on board 1 and

change to board 2 and run

setenv m4_file "can_wakeup_tx.bin"

run m4

You should see sent and received packets on both Cortex-M4 Screens and the Cortex-A9
woken up.

7.3.7 func_gen

Description

Just an utility application for the gpio_toggle demo.

Modifications made

-

Changes needed

BOARD_GPIO_LED provides the output signal

Execute binary

Simply Execute

setenv m4_file "func_gen.bin"

run m4

F&S Using FreeRTOS on F&S Boards 29

FreeRTOS examples

7.3.8 gpio_toggle

Description

A demo created by F&S to show the benefits for the real-time aspect of the I.MX6 SoCs. The
demo uses BOARD_GPIO_KEY as an interrupt-configured input GPIO and
BOARD_GPIO_LED as a normal output GPIO. Whenever a high signal is detected on the
KEY, the LED pin will toggle. This can be used to measure jitter between the two pins.

Modifications made

-

Changes needed

Connect a dupont cable with a function generator or the BOARD_GPIO_LED pin from anoth-
er board which runs the func_gen example and the BOARD_GPIO_KEY from the board
which runs this example.

The toggled signal will be provided under the BOARD_GPIO_LED pin.

Refer to Table 2 and Table 3 for pin connection information.

Execute binary

After preparing the board and GPIO connections, you should run

setenv m4_file "gpio_toggle.bin"

run m4

7.3.9 i2c_extension_board_demo

Description

This demo shows how to use I2C to control devices via master/slave-communication. The
demo was designed by F&S to use the I2C Extension Board with FreeRTOS and a PCA9555
driver provided by F&S instead of onboard sensors. You can choose between a polling and
interrupt demo on boot up.

Modifications made

A PCA9555 driver was implemented by F&S, the main.c was also reworked to communicate
with the I2C Extension Board. The key for switching the LEDs has been debounced.

Changes needed

You have to connect the I2C pins on the StarterKit with the corresponding ones on the I2C
Extension Board:

30 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

I2C-Clk with SCL,

I2C-Irq with INT and

I2C-Dat with SDA.

Refer to Table 8(efusA9X), Table 9(PicoCOMA9X) and Table 10(I2C Extension Board) for
locating the connection pins on the two boards.

If you want to try the interrupt demo you will need to connect a button to the default
BOARD_GPIO_KEY. See Table 2 for more information on GPIO pins.

Execute binary

Connect the pins on the I2C Extension Board and the StarterKit like stated in the paragraph
above and run

setenv m4_file "i2c_extension_demo_imx6sx.bin"

run m4

After the demo launched you will get the following screen:

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Now you can choose between a polling and interrupt version by pressing the corresponding
key on the keyboard.

If you press '1', you will get

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Your choice: Polling Demo

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

F&S Using FreeRTOS on F&S Boards 31

FreeRTOS examples

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

The LEDs have been successfully turned off!

And the LEDs on the I2C Extension board will be toggled every 1 s.

If you press '2', you will get

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Your choice: Interrupt Demo

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

And the LEDs will be toggled if you press the button connected to the gpioPwm5.

7.3.10 periodic_wfi_tcm

Description

This demo also highlights the low power management feature of the Cortex-M4 by setting
himself in sleep mode, informing Cortex-A9 about its power state who then can shut down all
peripherals which are not needed.

Modifications made

Commented out lines 222 to 223 in main.c since the demo now uses TCM instead of
QSPI.

Changed CMAKE_EXE_LINKER_FLAGS_* to use *tcm_lowpower.ld instead of
*qspi2b.ld

Changes needed

none

Execute binary

Run

32 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

setenv m4_file "periodic_wfi.bin"

run m4

to kick off the demo.

7.3.11 pingpong_bm

Description

The Master peer on Linux side sends an integer to the Cortex-M4 application, which adds
one and transfers it back. This demo works on bare metal base.

Modifications made

Added

LMEM_FlushSystemCache(LMEM);

LMEM_InvalidateSystemCache(LMEM);

to middleware/multicore/open-amp/rpmsg/rpmsg_core.c, multicore/open-
amp/porting/env/bm/rpmsg_porting.c/ and rtos/FreeRTOS/Source/queue.c

Changes needed

You might have to change the allocation address for the VRINGs and the BOARD_SIZE.
See chapter 5.6 for more information.

Execute binary

First run

setenv m4_file "rpmsg_pingpong_bm_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_pingpong

to load the pingpong master side module. After this you should see

Get Data From Master Side : 0

Get Data From Master Side : 2

Get Data From Master Side : 4

on Cortex-M4 and

get 1 (src: 0x0)

get 3 (src: 0x0)

get 5 (src: 0x0)

F&S Using FreeRTOS on F&S Boards 33

FreeRTOS examples

on Cortex-A9 side.

7.3.12 pingpong_freertos

Description

The Master peer on Linux side sends an integer to the Cortex-M4 application, which adds
one and transfers it back. The FreeRTOS RPMsg API is used here.

Modifications made

See Modifications made in subchapter 7.3.11.

Changes needed

You might have to change the allocation address for the VRINGs and the BOARD_SIZE.
See chapter 5.6 for more information.

Execute binary

First run

setenv m4_file "rpmsg_pingpong_freertos_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_pingpong

to load the pingpong master side module. After this you should see

Get Data From Master Side : 0

Get Data From Master Side : 2

Get Data From Master Side : 4

on Cortex-M4 and

get 1 (src: 0x0)

get 3 (src: 0x0)

get 5 (src: 0x0)

on Cortex-A9 side.

34 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

7.3.13 str_echo_bm

Description

This demo demonstrate the RPMsg extension API by creating a channel from Cortex-A9 to
Cortex-M4 via /dev/ttyRPMSG. After initialization, you can enter a string which then will be
replied back and can be read from /dev/ttyRPMSG. This demo works on bare metal base.

Modifications made

See Modifications made in subchapter 7.3.11.

Changes needed

You might have to change the allocation address for the VRINGs. See chapter 5.6 for more
information.

Execute binary

First run

setenv m4_file "rpmsg_str_echo_bm_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_tty

to load the tty master side module.

Now you can echo content via /dev/ttyRPMSG to the Cortex-M4, which then will reply this
back to said device:

echo 'Test' > /dev/ttyRPMSG && read x < /dev/ttyRPMSG && echo $x

This will send the string “Test” to the Cortex-M4, read out /dev/ttyRPMSG again to a variable
and print this in the terminal.

7.3.14 str_echo_freertos

Description

This demo demonstrate the FreeRTOS RPMsg extension API by creating a channel from
Cortex-A9 to Cortex-M4 via /dev/ttyRPMSG. After initialization, you can enter a string which
then will be replied back and can be read from /dev/ttyRPMSG. This demo uses the FreeR-
TOS RPMsg API.

Modifications made

See Modifications made in subchapter 7.3.11.

F&S Using FreeRTOS on F&S Boards 35

FreeRTOS examples

Changes needed

You might have to change the allocation address for the VRINGs. See chapter 5.6 for more
information.

Execute binary

First run

setenv m4_file "rpmsg_str_echo_freertos_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_tty

to load the tty master side module.

Now you can echo content via /dev/ttyRPMSG to the Cortex-M4, which then will reply this
back to said device:

echo 'Test' > /dev/ttyRPMSG && read x < /dev/ttyRPMSG && echo $x

This will send the string “Test” to the Cortex-M4, read out /dev/ttyRPMSG again to a variable
and print this in the terminal.

7.3.15 sema4_demo

Description

Simple demo which shows how to implement a multicore mutex without spinning with CPU.

Modifications made

none

Changes needed

none

Execute binary

Run

setenv m4_file "sema4_demo.bin"

run m4

to kick off the demo.

36 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

7.3.16 sensor_demo

This example wasn't ported because the efusA9X does not provide any onboard sensors.

You can still find the demo in

/examples/efusa9x/demo_apps/not_tested/sensor_demo,

but you should use the i2c_extension_board_demo with the I2C Extension Board from
F&S instead.

7.4 driver_examples

7.4.1 adc_imx6sx

Description

This example demonstrate the usage of the ADC on the efusA9X by measuring the AD input
on the ADC1_IN0, converting and printing the result every 5 second to the console.

Modifications made

none

Changes needed

The efusA9X does not have the RN3 resistor network (22R) connected on the board by de-
fault, so keep in mind to add this if you want to run the example.

Execute binary

Run

setenv m4_file "adc_imx6sx_example.bin"

run m4

7.4.2 ecspi_interrupt

Description

In this example the master board transfers an array to the slave board, which is then send
back to the master. This demo uses interrupts.

Modifications made

Inserted function calls

F&S Using FreeRTOS on F&S Boards 37

FreeRTOS examples

ECSPI_SetDataInactiveState(BOARD_ECSPI_MASTER_BASEADDR,
BOARD_ECSPI_MASTER_CHANNEL, ecspiDataLineStayLow);

and

ECSPI_SetDataInactiveState(BOARD_ECSPI_SLAVE_BASEADDR,
BOARD_ECSPI_SLAVE_CHANNEL, ecspiDataLineStayLow);

to the master and slave main.c to keep MOSI low between assertion of CS and starting og
the clock.

Changes needed

You have to connect the masters MOSI, MISO, CLK and CS1 ping with their counterparts on
the slave board (MOSI → MOSI, MISO → MISO, CLK → CLK and CS1 → CS1).

Refer to Table 6(efusA9X) and Table 7(PicoCOMa9X) for the correct pins.

Execute binary

First run

setenv m4_file "ecspi_interrupt_master_example.bin"

run m4

on the master board. Wait for the following line to appear on the terminal connected to the
Cortex-M4:

Press "s" when spi slave is ready.

Now connect to the slave board and run

setenv m4_file "ecspi_interrupt_slave_example.bin"

run m4

If the demo kicks off on the slave board, press “s” on the terminal connected to the masters
board Cortex-M4. Now you should see data transmitted between the two boards.

7.4.3 ecspi_polling

Description

In this example the master board transfers an array to the slave board, which is then send
back to the master. This demo uses the polling mode for achieving it's goal.

Modifications made

Inserted function calls

ECSPI_SetDataInactiveState(BOARD_ECSPI_MASTER_BASEADDR,
BOARD_ECSPI_MASTER_CHANNEL, ecspiDataLineStayLow);

and

38 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

ECSPI_SetDataInactiveState(BOARD_ECSPI_SLAVE_BASEADDR,
BOARD_ECSPI_SLAVE_CHANNEL, ecspiDataLineStayLow);

to the master and slave main.c to keep MOSI low between assertion of CS and starting og
the clock.

Changes needed

See 7.4.2 ecspi_interrupt for information on wiring the two boards.

Execute binary

First run

setenv m4_file "ecspi_polling_master_example.bin"

run m4

on the master board. Wait for the following line to appear on the terminal connected to the
Cortex-M4:

Press "s" when spi slave is ready.

Now connect to the slave board and run

setenv m4_file "ecspi_polling_slave_example.bin"

run m4

If the demo kicks off on the slave board, press “s” on the terminal connected to the masters
board Cortex-M4. Now you should see data transmitted between the two boards.

Attention

There is a bug inside the iMX6 which prevents the usage of burstlengths greater than [(32
* n) + 1], so don't set it to more than 32!

Note 6: Maximum Burstlength

7.4.4 epit

Description

Simple application demonstrating two different EPIT instances (EPIT1 and EPIT2) cathing
each others counter every 0.5 s.

Modifications made

none

F&S Using FreeRTOS on F&S Boards 39

FreeRTOS examples

Changes needed

none

Execute binary

Run

setenv m4_file "epit_example.bin"

run m4

to kick off the demo.

7.4.5 flexcan_loopback_epit

Description

This example demonstrates the FlexCAN module loopback operating mode by sending data
from the tx message buffer to its own rx message buffer.

Modifications made

none

Changes needed

Disable &flexcan1 and/or &flexcan2 in the Device Tree by changing

status = okay

to

status = disabled

in efusa9x.dts if you want to boot up the Cortex-A9 parallel to the Cortex-M4.

Execute binary

Run

setenv m4_file "flexcan_loopback_epit_example.bin"

run m4

7.4.6 flexcan_network_epit

Description

Like in the can_wakeup demo this one will send data packets over the CAN bus between
two boards.

40 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

Modifications made

none

Changes needed

Please refer to Table 4(efusA9X) or Table 5(PicoCOMA9X) for the necessary pin configura-
tions.

Connect CAN_*_TX to the corresponding CAN_*_TX on the second board and do the same
with CAN_*_RX.

You need to compile two versions of the software. The first one need

#define NODE 1

the other must be built with

#define NODE 2

Save each *.bin under a different name (like
flexcan_network_epit_example_b1.bin) before transfering them to the boards RAM.

Execute binary

Run

setenv m4_file "flexcan_network_epit_example_b1.bin"

run m4

on board 1 and

setenv m4_file "flexcan_network_epit_example_b2.bin"

run m4

on the other one.

7.4.7 gpio_imx

Description

This simple application shows how to use LED, buttons, etc. connected to the board via the
GPIO interface.

Modifications made

Changed

configure_gpio_pin(BOARD_GPIO_KEY_CONFIG);

to

set_iomux(MX6SX_PAD_LCD1_DATA23__GPIO3_IO_24, 0x30B0);

set_iomux(MX6SX_PAD_LCD1_DATA22__GPIO3_IO_23, 0x30B0);

F&S Using FreeRTOS on F&S Boards 41

FreeRTOS examples

Changes needed

Connect a LED and a Button to the GPIOs configured in Table 1 (see 7).

BOARD_GPIO_KEY_CONFIG and BOARD_GPIO_LED_CONFIG must be properly config-
ured (see “Changes Needed” in 27).

Execute binary

Run

setenv m4_file "gpio_imx_example.bin"

run m4

7.4.8 i2c_interrupt_extension_board_imx6sx

Description

A sample application which uses the FreeRTOS I2C API to let the board communicate as a
master with other i2c slaves. It will configure the I2C Extension Board via I2C and then start
a chaser light on it to check if the configuration was successful. This application uses inter-
rupts.

Modifications made

Used the i2c_interrupt_sensor_imx6sx as a template and changed the purpose and
functionality.

Changes needed

See 7.3.9 i2c_extension_board_demo, section “Changes Needed” and Table 8(efusA9X),
Table 9(PicoCOMA9X) and Table 10(I2C Extension Board) for the required pin connections
for the I2C bus.

Execute binary

Connect the pins as stated in “Changes needed”, then run

setenv m4_file
"i2c_imx_interrupt_extension_board_imx6sx_example.bin"

run m4

to kick of the demo. You will see the following screen and a chaser light on the I2C Exten-
sion Board, which goes from the left to the right LED and then vice versa:

+++++++++++++++ I2C Send/Receive interrupt Example ++++++++++++++

This example will configure the i2c extension board through I2C
Bus

42 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

and run a chaser light to see if the i2c extension board was
properly configured.

[1]. Initialize the I2C module with initialize structure.

[2]. Clear input data polarity, so that it will be retained

[3]. Configure Ports as outputs

[4]. Set PCA9555 output port 1 to 0x1

[5]. Start chaser light

Example finished!!!

7.4.9 i2c_polling_extension_board_imx6sx

Description

A sample application which uses the FreeRTOS I2C API to let the board communicate as a
master with other i2c slaves. It will configure the I2C Extension Board via I2C and then start
a chaser light on it to check if the configuration was successful. This application uses polling.

Modifications made

Used the i2c_interrupt_sensor_imx6sx as a template and changed the purpose and
functionality.

Changes needed

See 7.3.9 i2c_extension_board_demo, section “Changes Needed” and Table 8(efusA9X),
Table 9(PicoCOMA9X) and Table 10(I2C Extension Board) for the required pin connections
for the I2C bus.

Execute binary

Connect the pins as stated in “Changes needed”, then run

setenv m4_file
"i2c_imx_polling_extension_board_imx6sx_example.bin"

run m4

to kick of the demo. You will see the following screen and a chaser light on the I2C Exten-
sion Board, which goes from the left to the right LED and then vice versa:

+++++++++++++ I2C Send/Receive polling Example ++++++++++++++++

This example will configure the i2c extension board through I2C
Bus

F&S Using FreeRTOS on F&S Boards 43

FreeRTOS examples

and run a chaser light to see if the i2c extension board was
properly configured.

[1]. Initialize the I2C module with initialize structure.

[2]. Clear input data polarity, so that it will be retained

[3]. Configure Ports as outputs

[4]. Set PCA9555 output port 1 to 0x1

[5]. Start chaser light

Example finished!!!

7.4.10 i2c_interrupt_sensor_imx6sx

This example wasn't ported because the efusA9X does not provide any onboard sensors.

You can still find the demo in

/
examples/efusa9x/driver_examples/not_tested/i2c_interrupt_sensor_imx
6sx,

but you should use the i2c_interrupt_extension_board_imx6sx with the I2C Exten-
sion Board from F&S instead.

7.4.11 i2c_polling_sensor_imx6sx

See “6.2.8 i2c_interrupt_sensor_imx6sx” for more information.

Use i2c_polling_extension_board_imx6sx instead.

7.4.12 uart_polling

Description

This example works similar to the hello_world one except that it only echos input

and uses a polling interface.

Modifications made

none

Changes needed

If you want to run this example while booting the Cortex-A9, you have to disable the UART
configuration in the Device Tree by changing the following line in &uart3:

44 F&S Using FreeRTOS on F&S Boards

FreeRTOS examples

status = "disabled";

Execute binary

Run

setenv m4_file "uart_imx_polling_example.bin"

run m4

7.4.13 uart_interrupt

Description

This example works similar to the hello_world one except that it only echos input

and uses interrupts.

Modifications made

none

Changes needed

If you want to run this example while booting the Cortex-A9, you have to disable the UART
configuration in the Device Tree by changing the following line in &uart3:

status = "disabled";

Execute binary

Run

setenv m4_file "uart_imx_interrupt_example.bin"

run m4

7.4.14 wdog_imx

Description

Simple demo which enables WDOG with 1.5s timeout and a interrupt is triggered to refresh
the WDOG timer four times.

Modifications made

none

F&S Using FreeRTOS on F&S Boards 45

FreeRTOS examples

Changes needed

none

Execute binary

Run

setenv m4_file "wdog_imx_example.bin"

run m4

46 F&S Using FreeRTOS on F&S Boards

Appendix

8 Appendix

List of Figures

Figure 1: Comparison of FreeRTOS and Linux application jitter (scaling: 2ms/div)................1

Figure 2: Measurement results for FreeRTOS (scaling: 2us/div)..2

Figure 3: Measurement results for Linux application with interactive as governor (scaling:
200us/div)...2

Figure 4: Measurement results for Linux application with performance as governor (scaling:
200us/div)...3

Figure 5: Measurement results for Linux application with powersave as governor (scaling:
200us/div)...3

Figure 6: Measurement results for Linux application with interactive as governor and highest
priority (scaling: 200us/div)..4

Figure 7: Measurement results for Linux application with performance as governor and high-
est priority (scaling: 200us/div)..4

Figure 8: Measurement results for Linux application with powersave as governor and highest
priority (scaling: 200us/div)..5

List of Tables

Table 1: Measurement results...5

Table 2: Pin Assignment of preconfigured GPIOs for efusA9X..7

Table 3: Pin Assignment of preconfigured GPIOs for PicoCOMA9X.....................................8

Table 4: Pin Assignment for CAN2 Pins on efusA9X..9

Table 5: Pin Assignment for CAN1 Pins on PicoCOMA9X..9

Table 6: Pin Assignment for eCSPI on efusA9X...9

Table 7: Pin Assignment for eCSPI on PicoCOMA9X...10

Table 8: Pin Assignment for I2C2 Pins on efusA9X...10

Table 9: Pin Assignment for I2C4 Pins on PicoCOMA9X..10

Table 10: Pin Assignment on I2C Extension Board..11

Listings

F&S Using FreeRTOS on F&S Boards 47

Appendix

Listing 1: suspend Cortex-A9..28

Known Issues

As stated in the IMX6SXCE, Rev. 1 from 04/2016, there is an issue with some of the I.MX6
SoloX chips solded on the PicoCOMA9X. This prevents the usage of all RDC_* calls from
the FreeRTOS API, otherwise the Cortex-A9 or Cortex-M4 will hang.

This occur on chips with date code lesser than 1524. Apparently, there is no known solution
to this problem. Contact F&S for more information.

See http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Er-
rata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&
fileExt=.pdf for a detailed description on this.

Third Party Agreement from Real Time Engineers Ltd.

Any FreeRTOS source code, whether modified or in its original release form, or whether in
whole or in part, can only be distributed by you under the terms of version 2 of the GNU
General Public License plus this exception. An independent module is a module which is not
derived from or based on FreeRTOS.

Clause 1: Linking FreeRTOS with other modules is making a combined work based on
FreeRTOS. Thus, the terms and conditions of the GNU General Public License V2 cover the
whole combination.

As a special exception, the copyright holders of FreeRTOS give you permission to link
FreeRTOS with independent modules to produce a statically linked executable, regardless of
the license terms of these independent modules, and to copy and distribute the resulting ex-
ecutable under terms of your choice, provided that you also meet, for each linked indepen-
dent module, the terms and conditions of the license of that module. An independent module
is a module which is not derived from or based on FreeRTOS.

Clause 2: FreeRTOS may not be used for any competitive or comparative purpose, including
the publication of any form of run time or compile time metric, without the express permis-
sion of Real Time Engineers Ltd. (this is the norm within the industry and is intended to en-
sure information accuracy).

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.

48 F&S Using FreeRTOS on F&S Boards

http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

Appendix

F&S Elektronik Systeme reserves the right to make changes in its products or product speci-
fications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its prod-
ucts for any particular purpose, nor does F&S Elektronik Systeme assume any liability aris-
ing out of the documentation or use of any product and specifically disclaims any and all lia-
bility, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorised application, the Buyer shall indemnify
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any claim of personal injury or death that may
be associated with such unintended or unauthorised use, even if such claim alleges that F&S
Elektronik Systeme was negligent regarding the design or manufacture of said product.

F&S Using FreeRTOS on F&S Boards 49

	1 Introduction
	2 Pin Assignments
	2.1 GPIOs
	2.2 FlexCAN
	2.3 ECSPI
	2.4 I2C

	3 Installing Toolchain and FreeRTOS BSP
	3.1 Installation of the GCC embedded toolchain
	3.2 Installation of the FreeRTOS BSP 1.0.1
	3.3 Description of the FreeRTOS examples directory structure
	3.3.1 demo_apps
	3.3.2 driver_examples

	4 Configuration for Cortex-M4 usage
	4.1 Configuring UBoot
	4.2 Modifying the Linux Device Tree
	4.2.1 Booting Cortex-A9 with Linux while Cortex-M4 is running
	4.2.2 Shared clock for low power mode
	4.2.3 Protecting modules against reconfiguration
	4.2.4 Enabling RPMsg node

	5 General Modifications on FreeRTOS examples
	5.1 Changes in board.c
	5.2 Changes in board.h
	5.3 Changes in gpio_pins.c
	5.4 Changes in gpio_pins.h
	5.5 Changes in pin_mux.c
	5.6 Changes for the RPMsg Protocol
	5.6.1 VRING allocation addresses

	6 Building the examples
	6.1 Prepare.sh
	6.2 Make
	6.3 Clean.sh

	7 FreeRTOS examples
	7.1 General build information
	7.2 Resetting the Cortex-M4 in UBoot
	7.3 demo_apps
	7.3.1 hello_world
	7.3.2 hello_world_ocram
	7.3.3 hello_world_ddr
	7.3.4 hello_world_qspi
	7.3.5 blinking_imx_demo
	7.3.6 can_wakeup
	7.3.7 func_gen
	7.3.8 gpio_toggle
	7.3.9 i2c_extension_board_demo
	7.3.10 periodic_wfi_tcm
	7.3.11 pingpong_bm
	7.3.12 pingpong_freertos
	7.3.13 str_echo_bm
	7.3.14 str_echo_freertos
	7.3.15 sema4_demo
	7.3.16 sensor_demo

	7.4 driver_examples
	7.4.1 adc_imx6sx
	7.4.2 ecspi_interrupt
	7.4.3 ecspi_polling
	7.4.4 epit
	7.4.5 flexcan_loopback_epit
	7.4.6 flexcan_network_epit
	7.4.7 gpio_imx
	7.4.8 i2c_interrupt_extension_board_imx6sx
	7.4.9 i2c_polling_extension_board_imx6sx
	7.4.10 i2c_interrupt_sensor_imx6sx
	7.4.11 i2c_polling_sensor_imx6sx
	7.4.12 uart_polling
	7.4.13 uart_interrupt
	7.4.14 wdog_imx

	8 Appendix
	List of Figures
	List of Tables
	Listings
	Known Issues
	Third Party Agreement from Real Time Engineers Ltd.
	Important Notice

